Internal stress induced texture in Ni-Mn-Ga based glass-covered microwires
نویسندگان
چکیده
منابع مشابه
Phonon softening in Ni-Mn-Ga alloys
The TA2 phonon dispersion curves of Ni-Mn-Ga alloys with different compositions which transform to different martensitic structures have been measured over a broad temperature range covering both paramagnetic and ferromagnetic phases. The branches show an anomaly (dip) at a wave number that depends on the particular martensitic structure, and there is softening of these anomalous phonons with d...
متن کاملShape Memory and Huge Superelasticity in Ni–Mn–Ga Glass-Coated Fibers
Ni–Mn–Ga polycrystalline alloy fibers with diameters of 33 μm are reported to exhibit significantly improved ductility and huge superelastic and shape memory strains in comparison to conventional brittle bulk polycrystalline alloys. Particularly, the recoverable strain of the Ni54.9–Mn23.5–Ga21.6 fiber can be as high as 10% at 40 ◦C. Such optimized behavior has been achieved by a suitable fabri...
متن کاملIncreasing magnetoplasticity in polycrystalline Ni-Mn-Ga by reducing internal constraints through porosity.
Foams with 55% and 76% open porosity were produced from a Ni-Mn-Ga magnetic shape-memory alloy by replication casting. These polycrystalline martensitic foams display a fully reversible magnetic-field-induced strain of up to 0.115% without bias stress, which is about 50 times larger than nonporous, fine-grained Ni-Mn-Ga. This very large improvement is attributed to the bamboolike structure of g...
متن کاملRole of Shuffles and Atomic Disorder in Ni-mn-ga
We report results of ab-initio calculations of the ferromagnetic Heusler alloy Ni-Mn-Ga. Particular emphasis is placed on the stability of the low temperature tetragonal structure with c/a = 0.94. This structure cannot be derived from the parent L21 structure by a simple homogeneous strain associated with the soft elastic constant C ′. In order to stabilise the tetragonal phase, one has to take...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Physics
سال: 2013
ISSN: 0021-8979,1089-7550
DOI: 10.1063/1.4822168